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Abstract 15 

Bees possess remarkable cognitive abilities in on-the-fly visual learning, making them an ideal model for 16 
studying active information acquisition and representation. In this study, we investigated the minimal circuitry 17 
required for active vision in bees by considering their flight behaviours during visual pattern scanning. By 18 
developing a neural network model inspired by the insect visual system, we examined the influence of 19 
scanning behaviour on optic lobe connectivity and neural activity. Through the incorporation of non-20 
associative learning and exposure to diverse natural images, we obtained compelling results that align with 21 
neurobiological observations. Our findings reveal that active scanning and non-associative learning 22 
dynamically shape the connectivity within the visual lobe, resulting in an efficient representation of visual 23 
input. Interestingly, we observed self-organization in orientation-selective neurons in the lobula region, 24 
characterized by sparse responses to orthogonal bar movements. These dynamic orientation-selective cells 25 
cover various orientations, exhibiting a bias towards the speed and contrast of input sampling. To assess the 26 
effectiveness of this spatiotemporal coding for pattern recognition, we integrated our model with the 27 
mushroom body circuitry underlying associative learning. Notably, our model demonstrated impressive 28 
performance across several pattern recognition tasks, suggesting a similar coding system within the bee visual 29 
system. Overall, this study integrates behavioural experiments, neurobiological findings, and computational 30 
models to reveal how complex visual features can be condensed through spatiotemporal encoding in the 31 
lobula neurons, facilitating efficient sampling of visual cues for identifying rewarding foraging resources. Our 32 
findings have broader implications for understanding active vision in diverse animals, including humans, and 33 
offer valuable insights for the application of bio-inspired principles in the design of autonomous robots. 34 
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Introduction 38 

Bees are capable of remarkable cognitive feats, in particularly in visual learning (Srinivasan, 2010; Turner, 39 

1911; Von Frisch, 1914; Wehner, 1967); they can not only learn to associate a colour or orientation of a bar 40 

with reward (Dyer et al., 2011; Srinivasan, 1994; Stach et al., 2004) but are also able to identify specific features 41 

to categorise visual patterns, by finding the relevant stimuli properties (Benard et al., 2006; Stach et al., 2004). 42 

Furthermore, bees have demonstrated the capacity to grasp abstract concepts (Avarguès-Weber et al., 2011; 43 

Giurfa et al., 2001; Guiraud et al., 2018; MaBouDi et al., 2020c; Menzel, 2012) and solve numerosity tasks by 44 

scanning the elements within the presented stimuli (MaBouDi et al., 2020a). These exceptional capabilities 45 

position bees as a valuable animal model for investigating the principles of visual learning through the analysis 46 

of their behavioural responses (Menzel and Giurfa, 2006; Srinivasan, 2010). Nevertheless, it is still unclear how 47 

bees, with low visual acuity (Gribakin, 1975; Srinivasan and Lehrer, 1988) and limited neural resources can 48 

recognise complex patterns, and indeed perceive the visually intricate natural world they encounter during 49 

daily foraging activities (Chittka and Niven, 2009; Giurfa, 2013).  50 

 51 

Bees, as vital pollinators, must cope with the variability of the natural environment for their survival. The 52 

natural scenes that animals typically encounter are structured differently to random/non-natural scenes 53 

(Matthews et al., 2018; Ruderman, 1994; Simoncelli and Olshausen, 2001; Zimmermann et al., 2018). It has 54 

been hypothesised that visual sensory neurons must efficiently adapt to the regularities of the natural scene 55 

to take advantage of this spatio-temporal structure, and to efficiently code the information in the visual 56 

environment (Barlow, 1961). Hence, Insects visual neurons have evolved to provide robust and efficient 57 

responses to naturalistic inputs, enabling survival in complex ecological niches (Dyakova et al., 2019, 2015; 58 

Dyakova and Nordström, 2017). Numerous studies have highlighted the remarkable adaptability of the sensory 59 

pathway in insects, demonstrating robust response and behaviour across various input parameters, such as 60 

contrast, spatial frequency and spatiotemporal correlations (Arenz et al., 2017; Brinkworth and O’Carroll, 61 

2009; Clark et al., 2014; Dyakova et al., 2019; Dyakova and Nordström, 2017; Juusola and Song, 2017; 62 

Schwegmann et al., 2014; Serbe et al., 2016; Song and Juusola, 2014, 2014; Van Hateren, 1997; van Hateren, 63 

1992). For instance, Song and Juusola (2014) showed that fly photoreceptors extract more information from 64 

naturalistic time series compared to artificial stimuli or white noise, exhibiting stranger responses with a higher 65 

signal-to-noise ratio (Song and Juusola, 2014). Despite insights gained from the statistical properties of the 66 

natural scene, the precise neural mechanisms underlying visual processing of natural scene remain elusive, 67 

necessitating further investigation. This study aims to investigate the theoretical aspects of how insect visual 68 

circuitry adapts to regularities in natural scene. One of our objectives is to understand the efficient coding 69 

strategies and robust response mechanisms employed by these neurons that play a crucial role in enhancing 70 

visual pattern recognition and facilitate survival and navigation in variable environments.  71 
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In the realm of animal vision, active vision strategies have been observed, where animals actively scan tagets 72 

and extract visual information over time (Land, 1999; Land and Nilsson, 2012; Yarbus, 2013). Primates employ 73 

eye movements, including microsaccades, as an effective sampling strategy that enhances fine spatial 74 

information and improves the encoding details of natural stimuli (Anderson et al., 2020; Land, 1999; Rucci et 75 

al., 2007; Rucci and Victor, 2015). Other species, such as insects, exhibit active vision strategies throught 76 

characteristic head/body-movements or a certain approaching paths during a visual tasks (Chittka and 77 

Skorupski, 2017; Dawkins and Woodington, 2000; Land, 1973; Land and Nilsson, 2012; Langridge et al., 2021). 78 

Recent studies have discovered that Drosophila are able to move their retinas to stabilise their retinal images, 79 

achieving hyperacute vision and enhancing depth perception (Fenk et al., 2022; Juusola et al., 2017). 80 

Honeybees may need to sample and integrate colour information due to their limited ability to discriminate 81 

similar colours in brief flashes (<50ms) (Nityananda et al., 2014). They exhibit a sequence of movements in 82 

response to particular visual stimuli and employ continuous sampling to build a representation of their 83 

environment (Boeddeker et al., 2015; Collett et al., 1993; Doussot et al., 2021; Guiraud et al., 2018; Langridge 84 

et al., 2018; Lehrer and Collett, 1994; MaBouDi et al., 2020a; Werner et al., 2016). For instance, bumblebees 85 

acquire visual details of numerosity by sequential scanning of stimulus elements rather than parallel 86 

processing to enumerate the countable elements within the visual displays (MaBouDi et al., 2020a). A recent 87 

analysis of bumblebees’ flight trajectories showed that they sequentially scanned specific regions of the 88 

patterns prior to making a decision, instead of  global pattern processing (Langridge et al., 2021; MaBouDi et 89 

al., 2021b). Therefore, the low-resolution compound eyes and the possibly reduced parallel processing in 90 

insects (compared to vertebrates) suggest that these bees may employ an active vision strategy by continuous 91 

sampling to build up a picture of their environment (Chittka and Skorupski, 2017; Nityananda et al., 2014). 92 

These active vision strategies, akin to primate eye movements, serve fundamental functions in early visual 93 

processing for redundancy reduction (Doussot et al., 2021; Kuang et al., 2012; Odenthal et al., 2021). 94 

Nonetheless, it is still poorly understood how active vision strategies enable bees to overcome their limited 95 

representational capacity, discover regularities in the visual input and solve complex visual discriminations. 96 

Taking advantage of the bee’s visual ability and the detailed information on flight’s paths analysed in our 97 

previous study when bees solved a simple visual task (MaBouDi et al., 2021b), we conducted further research 98 

to investigate the necessary and minimally sufficient circuitry required for active vision of achromatic pattern 99 

recognition in bees. Importantly, our primary objective was to investigate how the scanning behaviour of bees 100 

contributes to the functional organization and connectivity of neurons in the visual lobe. We specifically 101 

focused on the hypothesis that complex visual features can be efficiently encoded through spatio-temporal 102 

patterns of activity in the lobula neurons, leading to distinct and specific representations necessary for learning 103 

in the miniature brain of bees. Through our study, we aimed to provide valuable insights into the intricate 104 

interplay between scanning behaviour and neural activity within the bee visual system, ultimately advancing 105 
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our understanding of the mechanisms underlying active vision. To achieve this, we developed a neuromorphic 106 

model of the bee optic lobes, incorporating the concept of efficient coding through the implementation of 107 

non-associative plasticity. Through this mode, we demonstrated how spatial scanning behaviour of bees in 108 

response to naturalistic visual inputs shape the connectivity within the medulla (2nd optic ganglion) and 109 

facilitate an efficient representation of these inputs in the lobula (3rd optic ganglion). This efficiency is achieved 110 

through the self-organization of a specific set of orientation-selective neuron in the lobula, highlighting the 111 

combined impact of scanning behaviour and non-associative learning on shaping the neural circuitry within 112 

the bees' optic lobes. To assess the model, we integrated the optic lobe model with a secondary decision-113 

making neural network inspired by neural mechanisms of associative learning in insect brains and supported 114 

by previous neurobiological findings (Cassenaer and Laurent, 2012; Okada et al., 2007; Paulk et al., 2009; Paulk 115 

and Gronenberg, 2008; Yang and Maddess, 1997). Visual input flight dynamics for the model were derived 116 

from our observations of bee behaviour during a visual discrimination task (MaBouDi et al., 2021b). This 117 

allowed us to evaluate and test the hypothesis of active sampling from our model against real-world behaviour 118 

results (MaBouDi et al., 2021b), as well as other published visual discrimination tasks performed by bees 119 

(Benard et al., 2006; Dyer et al., 2005; Srinivasan, 2010, 1994; Zhang and Horridge, 1992). Furthermore, we 120 

conducted a detailed analysis comparing the features and properties of neural responses that emerged in our 121 

model with existing neurobiological findings (James and Osorio, 1996; Paulk et al., 2008; Seelig and Jayaraman, 122 

2013; Yang and Maddess, 1997). By aligning our model’s outputs with established neurobiological data, we 123 

enhanced the credibility and reliability of our model in accurately capturing essential aspects of neural 124 

processing associated with active vision.  125 

 126 

Results 127 

A bio-inspired neural network of active vision 128 

To understand how bee scanning behaviour may efficiently shape the activity of neurons in the visual lobes of 129 

the bee brain based on the efficient coding, and how the visual information is processed for pattern 130 

recognition, we designed a neural network that drew inspiration from the known morphological and functional 131 

features of the insect brain (Figure 1A, C). The network approximates the neural circuitry which initially 132 

processes the visual input within the bees’ lamina and medulla (1st an 2nd optic ganglia). Then, to replicate 133 

temporal encoding during scans (Figure 1B), we supposed a structure of time delay of between 1 - 5 ‘temporal 134 

instances’ from the medulla neuron outputs to the lobula (3rd optic ganglion) wide-field neurons (Figure 1D). 135 

This arrangement enabled sequential sampling of specific locations along the scan line of the viewed visual 136 
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pattern, resulting in a gradually accumulated internal representation of the visual input as the ultimate output 137 

of the lobula neurons. 138 

 139 

  
Figure 1. Neural network of active vision inspired by neurobiology and flight dynamics of bees. (A) The 
right side displays the front view of the bumblebee head showing the component eye and antenna. Left 
hand side presents a schematic view of the bee's brain regions. Part of neural pathways from the retina 
to the mushroom bodies are also represented. Labels: AL – Antennal lobe; LH – Lateral horn; CC – Central 
complex; La – Lamina; Me – Medulla; Lo – Lobula; MB – Mushroom body. Figure was designed by Alice 
Bridges (B) A representation of the modelled bee’s scanning behaviour of a flower demonstrating how a 
sequence of patches project to the simulated bee’s eye with lateral movement from left to right. Below 
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shows the five image patches sampled by the simulated bee. (C) Representation of the neural network 
model of active vision inspired by micromorphology of the bee brain that underlie learning, memory and 
experience-dependent control of behaviour. The photoreceptors located in the eye component are 
excited by the input pattern. The activities of photoreceptors change the membrane potential of a 
neuron in the next layer, Lamina. The lamina neurons send signals (through W connectivity matrix) to the 
medulla neurons to generate spikes in this layer. Each wide-field lobula neuron integrates the synaptic 
output of five small-field medulla neurons. The lobula neurons are laterally inhibited by local lobula 
interconnections (via Q connectivity matrix). Lobula neurons send axons into the mushroom body for 
connection with Kenyon Cells (KCs) through a random matrix of connectivity, S. The KCs all connect to a 
single mushroom body output neuron (MBON) through random synaptic connections D. A single 
reinforcement neuron (yellow neuron) modulates the synaptic weights between KCs and MBON by 
simulating the release of octopamine or dopamine when presented with specific visual stimuli (see 
Method section). (D) A temporal coding model that is proposed as the connectivity between medulla and 
lobula neurons. Each matrix shows the inhibitory (blue) and excitatory (red) connectivity between lamina 
neurons to a medulla neuron at a given time delay. In this model, the five small-field medulla neurons 
that are activated by the locally visual input, at different times of scanning, send their activities to a wide-
field lobula neuron with a synaptic delay such that the lobula neuron receives all medulla input signals at 
the same instance (i.e. in the presented simulation the lobula neuron is maximally activated by the black 
vertical bar passing across the visual field from the left to right. Each underlying medulla neuron encodes 
the vertical bar in a different location of the visual field). 

 140 

In more detail, the model sampled the image input into five sequential patches of 75x75 pixels with a speed 141 

of 0.1 m/s, equating to a lateral movement of 15 pixels between patches (an example of sequential scanning 142 

is shown in Figure 1B, see Method Section) (MaBouDi et al., 2021b). The green pixel intensities of each image 143 

patch modified the membrane potential of 75x75=5625 photoreceptors within the single eye of the simulated 144 

bee. These photoreceptor responses converged to 625 lamina neurons via recurrent neural connectivity. 145 

Lamina neurons provided post-synaptic connections to 250 small-field medulla neurons via simple feed-146 

forward connectivity (Figure 1C, see Method Section). The medulla response from each image patch (of five 147 

patches that cover the image through the movement) is computed using a spiking neural model. Their spiking 148 

activities are then integrated into the synapses of their corresponding lobula neuron, with a time delay 149 

designed to ensure that the lobula neuron receives all the underlying medulla input signals at the same time. 150 

It is important to note that the proposed spatio-temporal coding is a simplification, as within the bee brain, 151 

this process would be achieved through dendritic and synaptic latency, or through intermediate neuron 152 

transmission within the medulla that is influenced by the non-associative learning in the visual lobe (Figure 153 

1C, D). We hypothesised that connectivity in the medulla and lobula could be modified by exposing the visual 154 

lobe to a series of time-varying images while incorporating non-associative learning rules and efficient coding 155 

principle (see Method Section for details).  156 

 157 
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The neural representation of the visual inputs was subsequently transmitted and processed in the mushroom 158 

body, which serves as the visual learning centres of the bee brain (Ehmer and Gronenberg, 2002; Li et al., 2017; 159 

Paulk and Gronenberg, 2008) (Figure 1C). For simplicity, a single mushroom body output neuron (MBON) is 160 

exposed, where the firing rate of this neuron expresses the simulated bee’s preference for any given visual 161 

input. By updating the synaptic weights within the mushroom body, we were able to train the neural network 162 

to associate visual patterns as either positive (resulting in low MBON firing rates) or negative (high MBON 163 

firing rates; see Discussion). After the visual network underwent acquisitive modification through non-164 

associate learning and extensive exposure to natural images, the whole network, as a simulated bee, was 165 

trained and tested with a variety of pattern recognition tasks from the published literature (Benard et al., 166 

2006; Dyer et al., 2005; Srinivasan, 2010, 1994; Zhang and Horridge, 1992), in particular with the “plus” and 167 

“multiplication sign” patterns used with the real bumblebees reported in MaBouDi et al., 2021 (Figure 2A). 168 

Finally, to assess the performance of the proposed active vision model in various pattern recognin tasks, we 169 

analysed the MBON as it is supposed to function as a pre-motor area. In this context, a lower response from 170 

the MBON to a specific pattern would indicate the bees’ performance towards that particular pattern. 171 

Consequently, after multiple training trials, we presumed the MBON acts as a decision neuron, showing a 172 

lower response to the chosen pattern and higher response to the rejected pattern in the tests. Note that no 173 

reinforcement, or synaptic updates were implemented during the testing phase.   174 

 175 

The model’s performance in the same visual discrimination task is changed by scanning behaviour 176 

To replicate the bee behavioural results seen in the published literature (Benard et al., 2006; Dyer et al., 2005; 177 

MaBouDi et al., 2021b; Srinivasan, 1994, 2010; Zhang and Horridge, 1992), we implemented the type of 178 

computational plasticity in the mushroom body circuitry that is necessary to mediate both appetitive and 179 

aversive value encoding. Here, we assumed that classical spike-timing-dependent plasticity (STDP) (Figure 7) 180 

modulated by dopamine governs the plasticity rule between the mushroom body Kenyon cells (KC) and 181 

extrinsic Mushroom Body Output Neurons (MBON) in the presence of negative (or unrewarded) patterns. 182 

Additionally, we introduced a novel plasticity rule using STDP (Figure S2B) modulated by octopamine, which 183 

we hypothesised leads to synaptic depression among KC-MBON connections. These different plasticity rules 184 

were employed to investigate the synaptic dynamics in response to positive and negative patterns (see 185 

Method and Discussion sections).  186 

 187 

 188 

 189 
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Figure 2. Simulated bees’ performance in a pattern recognition task using different scanning strategies. 
Twenty simulated bees, with random initial neuronal connectivity in mushroom bodies (see Methods) 
and a fixed connectivity in the visual lobe that were shaped from the non-associative learning, were 
trained to discriminate plus from a multiplication symbol (100 random training exposures per pattern). 
The simulated bees scanned different regions of the patterns at different speeds. (A) Top and below 
panels show the five image patches sampled from the plus and multiplication symbols by simulated bees, 
respectively. It is assumed that the simulated bees scanned the lower half of the patterns with lateral 
movement from left to right with normal speed (0.1 m/s). (B) The plot shows the average responses of 
the MBON to rewarding multiplication and punishing plus pattern during training procedure (plus symbol 
rewarding, producing an Octopamine release by the reinforcement neuron, and the multiplication 
symbol inducing a Dopamine release). This shows how the response of the MBON to the rewarding plus 
was decreased while its response to the punishing multiplication pattern was increased during the 
training. The MBON equally responded to both multiplication and plus before the training (at number of 
visits =0). (C) The performance of the simulated bees in discriminating the right-angled plus and a 45° 
rotated version of the same cross (i.e. multiplication symbol) (MaBouDi et al., 2021b; Srinivasan, 1994), 
when the stimulated bees scanned different regions of the pattern (left corner, lower half, whole pattern) 
at different speeds: no speed 0.0m/s (i.e. all medulla to lobula temporal slices observed the same visual 
input), normal speed at 0.1 m/s and fast speed at 0.3m/s), and from a simulated distance of 2cm from 
stimuli (default) and 10cm (distal view). The optimal model parameters were for the stimulated bees at 
the default distance when only a local region of the pattern (bottom half or lower left quadrant) was 
scanned at a normal speed. (D) Mean performance (±SEM) of two groups of simulated bees in 
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discriminating the plus from multiplication patterns when their inhibitory connectivity between lobula 
neurons were not modified by non-associative learning rules.  
 

 190 

Video 1: An example of bee’s flight in recognising a plus sign pattern. The bee underwent training to 
receive 10 µl 50% sucrose solution (w/w) from the feeding tubes at the centre of the plus pattern. After 
carefully inspecting the lower half of the plus sign, the bee accurately chose the correct pattern (MaBouDi 
et al., 2021b). 

 191 
 192 

Video 2: An example of bee’s flight in recognising a multiplication sign pattern. The bee underwent 
training to receive 10 µl 50% sucrose solution (w/w) from the feeding tubes at the centre of the 
multiplication sign pattern. After carefully inspecting the lower half of the pattern, the bee accurately 
chose the correct pattern (MaBouDi et al., 2021b).  

 193 

We first trained the model using a differential conditioning task in which the correct stimulus S+ is paired with 194 

reward while incorrect stimulus S- is delivered with punishment. Hereafter for simplicity, we use a subscript S 195 

to the label of valence of the pattern with + for positive and - for negative valence. In our simulations of 196 

associative learning, we update only those synaptic weights between KCs and MBON that correspond to the 197 

presented patterns (see Method section). To represent the learning task for different bees, we replicated the 198 

simulations, using different initial parameters (random neural connectivity between lobula and Kenyon cells 199 

and KCs-MBON connections). We then tested the performance of our model in a set of different visual task 200 

paradigms detailed below (Figures 2, 3). During the initial experiment where bees had to distinguish a plus 201 

from a multiplication sign, trained on the lower half of the plus (Figure 2A), the firing rate of the MBON 202 

decreases after presenting the plus (S+) and tends to increase after presenting S- (lower half of multiplication 203 

sign); whereas MBON responded equally to both plus and cross before training (Figure 2B). This indicates that 204 

the model can discriminate visual patterns S+ and S- using temporal coding and active scanning of patterns 205 

(Figure 2C). Conversely, the model with fixed random inhibitory connectivity in the lobula could not 206 

discriminate between the plus and the multiplication sign patterns (Figure 2D). This emphasizes the 207 

importance of the structured connectivity that emerges in the bee visual lobes by the non-associative learning 208 

(i.e. spatio-temporal receptive fields of lobula neurons), and subsequent performance of the simulated bees 209 

in visual learning tasks. In other words, rewarding patterns induce decreased extrinsic neuron responses, but 210 

result in higher responses for punished patterns (Figure 2B). This behaviour aligns with the biological 211 

observations in the alpha lobe of mushroom body PE1 neurons, which indicate a decrease in the response of 212 

MBON in the presence of the positive stimuli (Okada et al., 2007).  213 

 214 

 The replication of the plus and multiplication experiment with our simulated bees initially resulted in a poor 215 

performance compared to the real bees (Figure 2C), with the correct preference when trained on plus of 53% 216 
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(average result of 20 simulated bees) and just 52% for the reciprocal cross protocol. These simulations used 217 

the model parameters obtained from the bumblebee experiments: average flight speed whilst scanning of 218 

0.1m/s, and a distance from the stimuli of 20mm. However, when the experiment was reconfigured for the 219 

simulated bees to scan only the bottom half of the patterns, or just the lower left corner (as seen with the real 220 

bees (MaBouDi et al., 2021), the correct choice performance increased to ≥96% and ≥98% respectively (Figure 221 

2C). Increasing the scanning speed (i.e. increasing the separation between image patches) reduced the average 222 

performance to 70%. Similarly, simulated stationary bees only achieved 60% correct choices.  223 

 224 

Neural network model of active vision bee behaviours in a variety of visual experiments 225 

In this study, we evaluated our model (utilising scans from the lower half only) by comparing it with other 226 

bees’ experiments reported in the literature. It is important to note that bees may exhibit variations in 227 

scanning behaviour under different patterns and training conditions (see Discussion section). We found our 228 

simulated bees could discriminate angled bars (Hateren et al., 1990), a 22.5° angled cross from a 90° rotated 229 

version (Srinivasan, 1994) and spiral patterns (Zhang and Horridge, 1992) (Figure 3A). If trained on five 230 

perpendicular grating patterns, the simulated bees correctly identified the correct novel grating and a single 231 

bar pattern variant (Figure 3B). Figure 3C shows that not only could the proposed neural network learn to 232 

identify the correctly oriented bar pattern, but also identify the rewarding pattern from a novel one (two 233 

circles). More importantly the model showed a lower preference (22%) for the negatively trained pattern to 234 

that of the same novel pattern. This validates the implementation of the rejection behaviour in the model, 235 

demonstrating that the model simultaneously learns the rewarding and aversive stimuli. This was further 236 

explored by training the neural networks with patterns that contained two oriented bars in each lower 237 

quadrant of the patterns (Figure 3D) (Benard et al., 2006; Stach et al., 2004; Zhang and Horridge, 1992). The 238 

simulated bees again discriminated the training patterns without difficulty (over 99% accuracy). However, they 239 

performed worse on a simplified variant of the patterns with an average result of just 61%. When tested with 240 

the original positive pattern and novel patterns that contained just one correct orientation the bees had a high 241 

preference for the correct stimulus. Equally, the simulated bees showed a preference, if not as dominant, for 242 

a pattern that contained just one correct feature versus the trained negative pattern; showing that the model 243 

was able to extract more than a single feature during its scan of the pattern. To provide a substantially more 244 

complex pattern recognition task, we replicated the facial recognition experiment performed on honeybees 245 

(Dyer et al., 2005). We trained the neural network with images of two human faces (Figure 3E). Similar to the 246 

performance seen in honeybees, our simulated bees were able to identify the positive trained face from the 247 

negative one, two novel faces and a caricature of a face. Both the real bees and our simulated ones were 248 

unable to discriminate the faces when rotated through 180°. This result shows that complex visual features 249 

can be condensed through spatiotemporal encoding in the lobula neurons into specific and distinct neuronal 250 
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representations needed for learning in a miniature brain of the bee. This result is quite remarkable but shows 251 

that complex visual features can be condensed through spatiotemporal encoding in the lobula neurons into 252 

specific and distinct neuronal representations needed for learning in a miniature brain of the bee. 253 

 254 
  

    
Figure 3. Minimal neural network performance to published bee pattern experiments. Twenty 
simulated bees, with random initial neuronal connectivity in mushroom bodies (see Methods), were 
trained to discriminate a positive target pattern from a negative distractor pattern (50 training exposures 
per pattern). The simulated bees’ performances were examined via unrewarded tests, where synaptic 
weights were not updated (average of 20 simulated pattern pair tests per bee). Except for (A) all 
simulations were conducted at the default distance (2cm) and normal speed (0.1m/s) scanning the lower 
half of the pattern. (A) Mean percentage of correct choices (±SEM) in discriminating bars oriented at 90° 
to each other, 25.5° angled cross with a 45° rotated version of the same cross, and a pair of mirrored 
spiral patterns (MaBouDi et al., 2021b; Srinivasan, 1994). The simulated bees achieved greater than 
chance performances. (B) Performance of simulated bees trained with a generalisation protocol (Benard 
et al., 2006). Trained to 6 pairs of perpendicular oriented gratings (10 exposures per grating). Simulated 
bees then tested with a novel gating pair, and a single oriented bar pair. The simulated bees performed 
well in distinguishing between the novel pair of gratings; less well, but still significantly above chance, to 
the single bars. This indicates that the model can generalise the orientation of the training patterns to 
distinguish the novel patterns. (C) Mean performance (±SEM) of the simulated bees in discriminating the 
positive orientation from negative orientation. Additionally, the performance in recognising the positive 
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orientation from the novel pattern, and preference for the negative pattern from a novel pattern. 
Simulated bees learnt to prefer positive patterns, but also reject negative patterns, in this case preferring 
novel stimuli. (D) Performance of simulated bees trained to a horizontal and -45° bar in the lower pattern 
half versus a vertical and +45° bar (Stach et al., 2004). The simulated bees could easily discriminate 
between the trained bars, and a colour inverted version of the patterns. They performed less well when 
the bars were replaced with similarly oriented gratings, but still significantly above chance. When tested 
on the positive pattern vs a novel pattern with one correctly and one incorrectly oriented bar the 
simulated bees chose the positive patterns (fourth and fifth bars), whereas with the negative pattern 
versus this same novel pattern the simulated bees rejected the negative pattern in preference for the 
novel pattern with single positive oriented bar (two last bars). (E) The graph shows the mean percentage 
of correct choices for the 20 simulated bees during a facial recognition task (Dyer et al., 2005). Simulated 
bees were trained to the positive (rewarded) face image versus a negative (non-rewarded) distractor 
face. The model is able to recognise the target face from distractors after training, and also to recognise 
the positive face from novel faces even if the novel face is similar to the target face (fourth bar). However, 
it failed to discriminate between the positive and negative faces rotated by 180°. 

 
 255 
Neural network response results during pattern learning 256 
 257 
The lobula neurons were additionally configured to laterally inhibit each other, allowing for non-associative 258 

learning (synaptic plasticity in the absence of reward) by employing synaptically local rules between lamina, 259 

medulla and lobula neurons (see Method section). The feed-forward weights from lamina to medulla neurons 260 

were updated with Oja’s implementation of Hebb’s rule (Oja, 1982) while symmetric inhibitory spike-timing-261 

dependent plasticity (iSTDP) rule was implemented in synaptic connectivity of the lateral inhibitory lobula 262 

neurons (Vogels et al., 2011). These rules drive the network to efficiently represent the visual input with a 263 

limited number of lobula neuron activations (Figure 4B) (see Discussion). Figure 4A illustrates the obtained 264 

receptive fields of lobula neurons representing the spatiotemporal orientation-selectivity obtained after 265 

training with 100 flower and natural images (50,000 time-varying image patches). Each square represents one 266 

of the 50 lobula neurons, with the heat map representing the synaptic weights of the associated lamina 267 

neurons (connected via the medulla neurons). As representing spatiotemporal results in Figure 4A is inherently 268 

unintuitive, an example of two lobula neurons is shown below the matrix with the lamina synaptic weights for 269 

each of the five medulla neurons (see temporal dynamic of obtained RFs in Video 3 for all 50 lobula neurons, 270 

and Figure 4 - figure supplement 1 and Video 4 for all 100 lobula neurons). The receptive fields of a lobula 271 

neuron contain an elongated ‘on’ area (positive synaptic weights), next to an antagonistic “off” area (negative 272 

synaptic weights) that are mostly arranged in parallel in a specific orientation. The proportion of both ‘on’ and 273 

‘off’ areas continuously change from one time-delayed instance of medulla responses to the next. In the first 274 

example, the lobula cell with such a receptive field responds best to a 135° angled bar moving in the direction 275 

orthogonal to the orientation of the ‘on’ or ‘off’ areas and produces little or no responses to other orientations 276 

(Figure 4C). Our population of 50 lobula neurons show specificity to orientation and direction, similar to the 277 

neuronal responses observed in the brain of bees and other insects  (James and Osorio, 1996; Paulk et al., 278 

2008; Seelig and Jayaraman, 2013; Yang and Maddess, 1997).  279 
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 280 
 

  
Figure 4. Neural responses of the simulated bee model to visual patterns. (A) Top: each square in the 
matrix corresponds to a single time slice of the obtained spatiotemporal receptive field of a lobula neuron 
(5x10 lobula neurons) that emerged from non-associative learning in the visual lobes after exposing the 
model to images of flowers and nature scenes (see Video 3). Bottom: spatiotemporal receptive field of 
two example lobula neurons are visualised in the five-time delay slices of the matrices of synaptic 
connectivity between lamina and five medulla neurons (See Figure 1D). The lobula neuron integrates 
signals from these medulla neurons at each of five time periods as the simulated bees scan a pattern 
(time goes from left to right). Blue and red cells show inhibitory and excitatory synaptic connectivity, 
respectively. The first example lobula neuron (#1) encodes the 150° angled bar moving from lower left 
to the upper right of the visual field. The second example lobula neuron (#48) encodes the movement of 
the horizontal bar moving up in the visual field. (B) An example of an image sequence projected to the 
simulated bee’ eye with lateral movement from left to right. Below shows the five images patched 
sampled by the simulated bee. The right side presents the firing rate of all lobula neurons responding to 
the image sequence. The spatiotemporal receptive field of two highest active neurons to the image 
sequence are highlighted in purple. (C) The polar plot shows the average orientation selectivity of one 
example lobula neuron (#1) to differently angled bars moving across the visual field in a direction 
orthogonal to their axis (average of 50 simulations). This neuron is most sensitive to movement when 
the bar orientation is at 150°. (D) The spiking response of the lobula neuron to the preferred orientation 
raised as the contrast was increased, whereas the response of the lobula neuron to a non-preferred 
orientation is maintained irrespective of contrast. (E) The average velocity-sensitivity curve (±SEM) of the 
orientation-sensitive lobula neuron (#1) is obtained from the responses of the lobula neuron to optimal 
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(angle of maximum sensitivity) moving stimuli presented to the model at different velocities. The red line 
shows the Gamma function fitted to the data.  

 
 281 

Video 3: Temporal dynamic of receptive field of 50 lobula neurons obtained from non-associate 

learning procedure and active scanning.  

 282 

For clarity, Figure 4B shows how a sequence of image patches simulating a horizontal scan is processed, and 283 

results in a limited number of lobula neuron responses. This means that the activity of lobula neurons is 284 

decorrelated and relatively sparse as a result of non-associative learning mechanisms in the visual lobe (See 285 

Discussion). Interestingly, the receptive field of two first active lobula neurons captured the visual structure of 286 

the flower’s petal that was scanned by the simulated bee (i.e. one is matched with left 45 angled edge of the 287 

flower’s petal and the other is almost matched with the right angled edge of the flower’s petal). This shows 288 

that our model can extract the different visual features of the input with a minimum number of filters (lobula 289 

neurons). To further demonstrate the characteristics of the 150° sensitive lobula neurons (as one example), 290 

the spiking activity of the neuron is calculated in the response to a set of oriented bars as they were moved in 291 

the direction orthogonal to their orientation. As expected, the neuron is maximally sensitive to a moving 150° 292 

bar (26 spikes/sec), it still responds to a horizontal bar and a moving 120° bar (18Hz) but has limited responses 293 

(above base firing rate) to the other stimuli (Figure 4C). Consistent with neural observations (Yang and 294 

Maddess, 1997), the firing rate response of our lobula neurons, at their ‘preferred’ orientations, rises as the 295 

contrast is increased. Conversely, their responses to the non-preferred orientations are constant irrespective 296 

of contrast (Figure 4D). Interestingly, these lobula neurons are also velocity-sensitive (Figure 4E). Thus, each 297 

lobula neuron optimally responds to a specific orientation and velocity. This demonstrates that our model 298 

captures many quantitative features of lobula neurons (Paulk et al., 2008; Yang and Maddess, 1997).  299 

 300 
 

Figure 4 - figure supplement 1: The spatiotemporal 

receptive field of lobula neurons emerged from the 

non-associative learning if the number of lobula 

neurons is set to 100 (see Video 4). 
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 301 

Video 4: Temporal dynamic of receptive field of 100 lobula neurons obtained from non-associate 

learning procedure and active scanning. 

 302 

What is the minimally sufficient circuitry required for active vision in bees? 303 

 As reported above, the model is able to accomplish a variety of pattern recognition tasks (Figures 2, 3). We 304 

asked whether our neural networks could perform with a very limited number of lobula neurons that transfer 305 

visual information to the mushroom body. Hence, we conducted the non-associative learning process with 306 

varying number of lobula neurons, setting them to either 4, 16, or 36 (the original model had 50 lobula 307 

neurons). Then the visual network was trained using the same set of natural images and protocol defined for 308 

the original model. Interestingly, the non-associative learning process led to the emergence of distinct spatio-309 

temporal structures in the lobula neurons. We found that the variability between the spatiotemporal receptive 310 

field of lobula neurons is reduced by decreasing the number of lobula neurons (Figure 5A and Videos 5, 6 ,7). 311 

The model cannot encode the spatio-temporal structure inherent in the training patterns if the model is 312 

limited to 4 neurons, only vertical and horizontal receptive fields were created (Video 5). As expected, the 313 

performance of the model decreased by reducing the number of lobula neurons. However, the model with 16 314 

lobula neurons can still solve the discrimination between plus and multiplication signs, and solve a difficult 315 

visual task above chance (Figure 5B, C). This finding highlights how the spatio-temporal encoding in the visual 316 

lobe enhances the model’s capacity to represent the visual environment using fewer neurons, compared to 317 

what is typically necessary in a minimal model.  318 
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Figure 5. Minimum number of lobula 
neurons that are necessary for pattern 
recognition. (A) Obtained 
spatiotemporal receptive field of lobula 
neurons when the number of lobula 
neurons were set at 36, 16 or 4 during 
the non-associative learning in the 
visual lobe (See Figure 5A). This shows 
the models with lower number of lobula 
neurons encode less variability of 
orientations and temporal coding of the 
visual inputs (see Videos 5,6) (B & C) 
The average correct choices of the three 
models with 36, 16 or 4 lobula neurons 
after training to a pair of plus and 
multiplication patterns (B) and mirrored 
spiral patterns (C). The model with 16 
lobula neurons still can solve pattern 
recognition tasks at a level above 
chance. It indicates that only 16 lobula 
neurons that provide all inputs to 
mushroom bodies are sufficient for the 
simulated bees to be able to 
discriminate between patterns.   
 
 

 
 319 

 320 
 

Video 5: Temporal dynamic of receptive field of 4 lobula neurons obtained from non-associate learning 

procedure and active scanning (compare it to Video 3). 

 321 
 

Video 6: Temporal dynamic of receptive field of 16 lobula neurons obtained from non-associate 

learning procedure and active scanning (compare it to Video 3). 

 322 
 

Video 7: Temporal dynamic of receptive field of 36 lobula neurons obtained from non-associate 

learning procedure and active scanning (compare it to Video 3). 

 323 

Moreover, to explore the effect of inhibitory neurons within the visual lobe on the output of lobula neurons, 324 

the model was trained using the same protocol, but the synaptic weights of the inhibitory connections to the 325 

lobula neurons were not updated during exposure to the training images. These fixed inhibitory connections 326 
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caused a limitation in shaping the population of lobula neurons to encode moving orientations (Figure 6 and 327 

Video 8). It indicates that the presence of inhibitory interneurons in the visual lobe plays a crucial role in 328 

facilitating an efficient representation of the visual environment.  329 

 330 

 
Figure 6. The role of lateral 
inhibitory connections 
between lobula neurons. 
Obtained spatiotemporal 
receptive field of lobula 
neurons when the lateral 
inhibitory connectivity 
between lobula neurons is 
fixed during the non-
associative learning (see Video 
8 and Figure 4A & Video 3).  
 
 
 

 331 
 

Video 8: Temporal dynamic of receptive field of 50 lobula neurons when the lateral inhibitory 

connectivity between lobula neurons is fixed during the non-associative learning (compare it with 

Video 3) 

 332 

 Taken together, these findings demonstrate that our assumption regarding non-associative plasticity in the 333 

visual lobe can successfully replicate the neural responses of lobula neurons across various patterns and 334 

conditions. This results in a sparse and uncorrelated representation of the visual input, which is advantageous 335 

for subsequent learning processes in the mushroom body. Importantly, these results align closely with 336 

theoretical studies (see Discussion section), further supporting the effectiveness of the active vision in 337 

capturing the underlying principles of information encoding in the insect visual system.  338 

 339 

Discussion  340 

In this study, we aimed to gain insights into the computational requirements for visual pattern recognition by 341 

investigating a minimal neural network. To achieve this, we leveraged the flight behaviours of bees during 342 

their active scanning of visual patterns and developed a novel model inspired by the insect's visual system. 343 

Through simulations, we examined how the visual environment is represented through the spatio-temporal 344 

responses of a small population of neurons in the lobula region in the visual lobe. By incorporating non-345 
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associative learning into our model, we discovered that it can effectively shape the connectivity within the 346 

visual lobe and generate an efficient representation of the input. This self-organization process led to the 347 

emergence of orientation-selective cells in the lobula, which played a vital role in encoding the complex visual 348 

environment. Our model of the bees’ visual system, and subsequent simulations, demonstrate that the 349 

complex visual environment can be condensed into spatiotemporal representations, expressed through the 350 

firing rate responses of a small population of lobula neurons sensitive to specific orientations and velocities. 351 

Not only are these limited representations capable of discriminating the plus and multiplication patterns used 352 

in our behavioural experiments (MaBouDi et al., 2021b), but can also generalise from trained patterns to novel 353 

stimuli, and even provide accurate results in a task of human face recognition, indicating its potential for 354 

broader applicability. Our findings also suggest that the movement of bees, or their active vision, may play a 355 

crucial role in their ability to efficiently analyse and encode their environment. The spatio-temporal encoding 356 

within the visual lobe appears to be a key mechanism employed by bees to achieve this efficient information 357 

representation. Overall, our study sheds light on the necessary computational requirements for visual pattern 358 

recognition, highlighting the significance of active vision and spatio-temporal encoding within the insect's 359 

visual system. These insights have implications not only for understanding the information processing 360 

capabilities of bees but also for inspiring the development of novel computational models for visual 361 

recognition tasks. 362 

The question of how animals deal with noisy and complex natural world has a long history (Barlow, 1961; 363 

Gibson, 1979; Menzel and Giurfa, 2006; Srinivasan, 2010). The efficient coding hypothesis is one of the 364 

important theoretical hypotheses in this field that refers to the phenomenon that the early visual system 365 

compresses inputs into a more efficient form to transmit relevant visual information with maximum 366 

information to higher order brain regions (Barlow, 1961). According to this hypothesis, the responses of a 367 

single cell in the visual system to the natural environment should entirely utilise its output capacity (e.g., 368 

maximum firing rate) and the population responses of different neurons to the natural signals should be 369 

statistically independent (Simoncelli and Olshausen, 2001). Bees present a wide range of complex behaviours 370 

over small scales of inspections and large scales of navigation (Menzel, 2012; Srinivasan, 2010) despite their 371 

limited computational resources. Thus, bees are an appropriate model to explore the effect of ecological 372 

constraints in the neural computation underlying cognition. The non-associative model presented in this study 373 

supports the efficient coding hypothesis (Figures 4 & 5). The suggested model works as a linear generative 374 

model that successfully replicates the receptive fields of cells in the lobula (Barlow, 1961; Olshausen, 2003). 375 

After training, the correlation among activity of lobula neurons to spatiotemporal naturalistic signals is highly 376 

reduced. Further, only a limited number of lobula neurons respond to specific visual stimuli (Figure 4). This 377 

indicates that the model removes redundancy in the natural scenes such that the receptive fields of lobula 378 
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cells often encode perceptually salient features in the natural scene and transfer the incoming signals into a 379 

more efficient form.  380 

 381 

In this study, we use the type of natural scenes with a statistical structure similar to those that visual systems 382 

have adapted to over evolutionary time periods (Geisler, 2008; Hyvärinen et al., 2009; Simoncelli and 383 

Olshausen, 2001). Also, since the main goal of bee navigation and foraging is finding food from a large variety 384 

of potential flower resources, our non-associative network was trained with a set of different flower images. 385 

As with all theoretical models this is a simplification, as real bees traverse a 3D environment viewed through 386 

a 270° field of view. Here, we assume that formation of receptive fields would be equivalent to that of our 2D 387 

simulations. However, further studies are necessary to refine and expand our model based on a more 388 

comprehensive understanding of the function and structure of the bee eye components (Juusola et al., 2017; 389 

Taylor et al., 2019). Moreover, investigating the neural mechanisms underlying visual learning in the bee brain 390 

will allow us to fine-tune our model’s architecture and parameters, leading to a more faithful representation 391 

of the bee visual system. Through continued research and collaboration, we plan to refine our model and gain 392 

deeper insights into the remarkable capabilities of the bee’s visual perception.  393 

 394 

Our findings align with previous studies on bumblebees' discrimination of plus and multiple sign patterns 395 

(MaBouDi et al., 2021b), indicating improved performance of our model when focusing on scanning the lower 396 

half of patterns at specific velocities. However, bees exhibit variations in scanning behaviour under different 397 

patterns and training conditions (Giurfa et al., 1999; Guiraud et al., 2018). It has been shown that honeybees 398 

and bumblebees can solve visual tasks by extracting localized or elemental features within patterns, adapting 399 

their discrimination strategies accordingly (Giurfa et al., 1999; MaBouDi et al., 2021b; Stach et al., 2004; Stach 400 

and Giurfa, 2005). Recent analysis of bee flight paths supports these findings, revealing how honeybees can 401 

successfully solve tasks by selectively scanning specific elements in stimuli (Guiraud et al., 2018). This suggests 402 

that bees may develop tailored flight manoeuvres during training, optimizing their scanning behaviour to 403 

extract maximum visual information based on patterns and protocols. Although our model highlights the 404 

importance of studying active vision, it is essential to recognize that further investigations are needed to 405 

explore the optimal flight scanning behaviour in bees. Additionally, incorporating an adaptive vision-motor 406 

loop into our models will enable a more comprehensive understanding of active vision in insects. These 407 

advancements will provide valuable insights into how insects perceive and interact with their visual 408 

environment, ultimately enhancing our understanding of the mechanisms underlying active vision. 409 

 410 

The results of our model suggest that passive visual exposure to natural images modifies the connectivity in 411 

the visual lobes and leads to better ability in pattern recognition (Figures 2, 3). These developed synaptic 412 
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connections emerged independent of the initial connectivity that each simulated bee had upon creation.  We 413 

assume that the specific visual experiences that real bees are exposed to in early life define the individual 414 

capabilities of each bee’s visual representation, which may influence their later performance in behavioural 415 

tasks (Hertel, 1983, 1982; MaBouDi et al., 2017; Vetter and Visscher, n.d.). There is direct empirical evidence 416 

for such neural developmental processes in olfactory systems of bees, where early passive exposure improved 417 

the bees’ later ability in odour discrimination (Arenas and Farina, 2008; Locatelli et al., 2013). Our previous 418 

research of olfactory coding demonstrated that the iSTDP learning rule can create specific connectivity in the 419 

sensory system and increase the separability of odour representations in the antennal lobe outputs (MaBouDi 420 

et al., 2017). A similar mechanism was developed here between lobula neurons, such that only a limited 421 

population of lobula neurons are excited for particular visual inputs, providing sparse and distinct outputs to 422 

the mushroom body learning centres (Figure 3B). The obtained receptive fields of lobula cells with the fixed 423 

lateral connectivity shows the inhibition is required for orientation selectivity and temporal coding in the visual 424 

lobe (Fisher et al., 2015). Our results highlight the important functions of inhibitory connections within the 425 

visual lobes. Accordingly, our model predicts that bees with less experiences of visual processing at the early 426 

stage of life are worse in the learning and memory of visual tasks compared with bees with rich visual 427 

experiences. However, further behavioural and neurobiological studies are required to assess this prediction.  428 

 429 

Mushroom bodies are critical centres for associative learning and memory in insects (Heisenberg, 2003; 430 

Menzel, 2012). Synapses between Kenyon Cells and extrinsic mushroom body neurons obey a Hebbian STDP 431 

rule (Cassenaer and Laurent, 2007; Markram et al., 1997). However the STDP rule alone cannot maintain 432 

associate learning  (Abbott and Nelson, 2000; Meeks and Holy, 2008). Associative learning in insects appears 433 

to rely on the neurotransmitters octopamine and dopamine, to reflect unconditioned signals for appetitive 434 

and aversive valances (Cognigni et al., 2018; Hammer, 1993; Hammer and Menzel, 1995; Perry and Barron, 435 

2013; Schwaerzel et al., 2003). These are released into the mushroom body lobes where Kenyon cells connect 436 

to MB output neurons (MBON) (Burke et al., 2012; Okada et al., 2007; Strube-Bloss et al., 2011). Cassenaer 437 

and Laurent, using in-vivo electrophysiology in locusts, reported the depressive action of octopamine on 438 

synapses underlying STDP rule that leads to a lower response for MOBNs in the presence of octopamine 439 

(Cassenaer and Laurent, 2012). Hence, following this observation, we model associative learning of pairing the 440 

positive pattern with the reward by the octopamine modulation of STDP (Equation 4; Figure 7). Here, both 441 

temporal ordering of pre- or post- synaptic spikes depress the synaptic connection between Kenyon cells and 442 

the MBON.s Also, the synapses are updated when the negative patterns are paired with the punishment 443 

following the classical STDP (Equation 3; Figure 7). This combination results in a complex interplay between 444 

synaptic changes and reinforcer signals and enriches the model to not only learn to correctly choose the 445 

positive patterns, but also learn to reject incorrect patterns (Figure 2B, 3C). The changes to the synaptic weight 446 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 6, 2023. ; https://doi.org/10.1101/2023.06.04.543620doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.04.543620
http://creativecommons.org/licenses/by-nd/4.0/


Insect-inspired minimal model for active vision 

21 

of connections results in a decreasing response of MBON to the positive patterns during the associative 447 

learning which is consistent with the PE1 extrinsic neuron in the honeybee brain that exhibits a lower response 448 

to the positive patterns (Okada et al., 2007) (Figure 2B). However, further studies are required to investigate 449 

the novel combination of octopamine and dopamine modulation of STDP that is introduced in this study. 450 

Together the non-associative learning in the optic lobes and supervised learning in the mushroom bodies 451 

produced a model capable of not only discriminating simple patterns but also generalisation (Figure 3B), and 452 

correct judgments in conflicting stimulus experiments (Figure 3D). However, the real power of this approach 453 

is exemplified in the facial recognition task (Figure 3E). Here, the complexity of the human face is reduced to 454 

a number of sparse lobula neuron activations that can be learnt by the mushroom bodies. But more interesting 455 

is that the spatiotemporal receptive fields formed during non-associative learning respond differently for 456 

different faces, allowing fine differences to still be sufficiently encoded. Real bees rarely have to discriminate 457 

between human faces, but these same processes undoubtedly aid bees in selecting rewarding flowers without 458 

requiring a complex visual memory within their miniature brains. 459 

 460 

Recent studies showed that bees can sometimes use a more efficient, less-cognitively demanding strategy to 461 

solve a cognitive task  (Cope et al., 2018; Guiraud et al., 2018; Langridge et al., 2021; MaBouDi et al., 2023, 462 

2021a, 2020b; Roper et al., 2017; Vasas et al., 2019). Most of bees’ responses to different cognitive tasks can 463 

be described by a simple neural network. For instance, Roper et al. (2017) suggest that reliable generalisation 464 

of visual information can be achieved through simple neuronal circuitry that is biologically plausible and can 465 

be accommodated in a small bee brain (Roper et al., 2017). Also, a mathematical model of colour processing 466 

in the bee brain propose that the diversity of colour-sensitive responses can be explained using a simple model 467 

by the assumption that these neurons receive randomly weighted inputs from all receptor types, and that this 468 

type of neural organisation is likely implemented during neural development and experience-dependent 469 

manner (MaBouDi et al., 2020b; Vasas et al., 2019). Together, the behavioural and computational experiments 470 

developed during our research emphasise the fundamental roles of exploring the mechanisms of cognitive 471 

abilities in animals with miniature brains and designing minimum neural networks to understand the 472 

requirements of certain cognitive tasks. A mechanistic investigation of how bees parse natural environments 473 

provides basic principles for current challenging problems in designing autonomous robots. Indeed, these 474 

computational shortcuts that have evolved for billions of years will enable us to develop more efficient 475 

artificial intelligence, capable of solving specific problems much more effectively than humans and current 476 

artificial intelligence (de Croon et al., 2022; Webb, 2020).   477 

 478 

Materials and Methods 479 

Network topology of active vision model  480 
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The model architecture of the bee visual pathway is shown in Figure 1. A bumblebee has a pair of compound 481 

eyes that are composed of ~5,500 ommatidia (Spaethe and Chittka, 2003; Streinzer et al., 2013). Each eye 482 

contains three different types of photoreceptors, short, medium and long wavelength sensitive peaking in the 483 

UV, blue and the green respectively (Menzel and Blakers, 1976; Skorupski et al., 2007). Since the green 484 

photoreceptors are those that predominantly mediate visual pattern recognition (Giger and Srinivasan, 1996; 485 

Spaethe et al., 2001), we modelled that 75x75 green photoreceptors in one eye component are activated by 486 

the pixel values of the input pattern. Photoreceptors then project to 625 (25x25) neurons in the lamina, which 487 

is the first centre of visual processing. In this model, one lamina neuron, 𝑟!"#, receives and sums inputs from 488 

nine neighbouring photoreceptors placed in neighbouring ommatidia, as 𝑟!"# = 𝑓(∑ 𝑟$%
$&' ; 	𝑎	, 𝑏). Here, 489 

𝑓(𝑥; 𝑎, 𝑏) = 𝐴(	/(1 + 𝑒𝑥𝑝(𝑚𝑥 + 𝑏) is the activation function where 𝐴(	 = 1	is the maximum activity of the 490 

lamina neurons and parameters 𝑚 = 1 and 𝑏 = 0 control the shape of the activation function 𝑓.  491 

Each medulla neuron is activated by the summation of activity of the lamina neuron via the synaptic 492 

connectivity W. Each spiking neuron in this study follows the integrate-and-fire model. The dynamics of the 493 

subthreshold membrane potential of a neuron, 𝑢(𝑡) is described by the following standard conductance- 494 

based leaky integrate-and-fire model: 𝜏 𝑑𝑢(𝑡)
𝑑𝑡

= −𝑢(𝑡) + 𝑅. 𝐼(𝑡), where 𝑅 = 10 and 𝜏 = 10𝑚𝑠	are the 495 

resistance and membrane time constant of the neuron respectively. Here, the input 𝐼(𝑡) exhibit the total 496 

synaptic input to the cell from presynaptic neurons.  497 

The membrane potential is reset to the base activity, 𝑣( = −80	𝑚𝑉, if it exceeds the threshold, 𝑉/ = 0	𝑚𝑉. 498 

However, the input of the 𝑚−the medulla neuron is calculated 𝐼012 = ∑ 𝑊0,!	
"
!&' 𝑟!"#. The value 𝑊!,0 specifies 499 

the strength of a synaptic input from the 𝑙 −th lamina neuron to the 𝑚−the medulla neuron. To model the 500 

variability of neural responses, a signal noise generated by Poisson distribution was added to the output of 501 

the neuron.  502 

 503 

We propose a temporal coding model between the medulla and lobula neurons. Each wide field lobula neuron 504 

receives synaptic input from M small field medulla neurons with delay 𝑇	(Figure 1D) (M corresponds to the 505 

number of frames in the input of the model). These small field medulla neurons are activated from M different 506 

regions of the image patch via the pathway passing through the photoreceptors and lamina neurons (Figure 507 

3B). While each medulla neuron is affected by 1/M of the pattern, a lobula neuron is activated by the whole 508 

pattern. M medulla neurons that are sampled from a selected region with delay 𝑇(	show the neural 509 

representation of the bees’ scanning behaviour in front of the pattern. The medulla neurons send their spiking 510 

responses to a wide-field lobula neuron with a synaptic delay such that all signals activate the lobula neuron 511 

in the same instance. The parameters of the model’s scanning behaviour (viewing distance: 2cm, flight speed 512 

0.1m/s) are obtained from bees whilst inspecting stimuli (MaBouDi et al., 2021b). 513 
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The lobula neurons are laterally interconnected by the inhibitory neurons via the synaptic connectivity 𝑄 =514 

C𝑞4,5E, where 𝑞4,5  represents the lateral connectivity between 𝑖 −th and 𝑗 −th lobula neurons. This connectivity 515 

along with 𝑊0,!	are updated during a non-associative learning process (see next subsection). The neurons in 516 

the lobula region send  excitatory signals to randomly selected Kenyon cells (KCs) in the mushroom bodies 517 

through the synaptic connectivity matrix (Caron et al., 2013; Szyszka et al., 2005) 𝑆 = C𝑠6,7E. The positive 518 

values 𝑠6,7 exhibits the strength synaptic weight from 𝑜-th lobula neuron to 𝑘-th KC. KCs in the network have 519 

sparse activity, meaning they are selective to particular image features (i.e. each pattern activates less than 520 

5% of Kenyon cells(Honegger et al., 2011)). All Kenyon cells project to a single mushroom body Output Neuron 521 

(MBON), which is the final output of the model. The input of the of the MBON, 𝐼189: , is computed by the KC-522 

MBON connections 𝐷 such that  𝐼189: = ∑ 𝐷7𝑟7;<;
7&' , where 𝑟7;<  is the spiking activity of the 𝑘-th KCs. Finally, 523 

a reinforcement neuron makes reinforcement-modulated connections with the KCs and MBON in the presence 524 

of the positive and negative patterns (see the next section). 525 

 526 

Training the network via a non-associative learning  527 

We trained the model on 50,000 time-varying patches randomly selected from 100 flowers and natural scenes. 528 

At each step of training, a set of five patches with size 75x75 pixels, selected by shifting 15 pixels over the 529 

image from the left or right or the reverse orientation (Figs 1B, 2A), was considered as the input of the model; 530 

this would correspond to the process of bees’ scanning part of the image. Using the network described above, 531 

the number of spikes from each lobula neuron are counted separately for each set of patches scanned through 532 

each movement. We start the training with all inhibitory connection strengths Q, where its elements are 533 

randomly generated from a uniform distribution between 0 and 1. The feed-forward synaptic weights are 534 

initialized with Gaussian white noise 𝒩(0, 1). The neural responses random time-varying patches evoked by 535 

the images were used to update the connections strengths Q and W, simultaneously (see Discussion section).  536 

After the image presentation, the feed-forward weight W is updated according to Oja’s implementation of the 537 

Hebbian learning rule (MaBouDi et al., 2017; Oja, 1982) via  538 

𝛥𝑊𝑖,𝑗 = 𝛾𝑟𝑗𝑀𝑒(𝑟𝑖𝐿𝑎 − 𝑟𝑗𝑀𝑒𝑊𝑖,𝑗)    (Equation 1) 539 

Here, the 𝑟512 and 𝑟4"# represent the activities of the j-th medulla and i-th lamina neurons, respectively. The 540 

positive constant 𝛾	defines the learning rate.  541 

At the same time of processing, the lateral inhibitory connectivity in the lobula is modified by inhibitory spike-542 

time-dependent plasticity (iSTDP) (Vogels et al., 2011). Here, we model non-associative learning in lobula by a 543 
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symmetric iSTDP between presynaptic of the inhibitory neurons and postsynaptic lobula neurons. In this 544 

learning rule, both temporal ordering of pre- or post- synaptic spikes potentiate the connectivity and the 545 

synaptic strength of j-th inhibitory neuron onto i-th lobula neuron (𝑄4,5) is updated as follows: 546 

𝛥𝑄𝑖,𝑗 = 𝜂(𝑟𝑖𝐿𝑜 ∗ 	𝑟𝑗𝐼𝑛 − 𝛼)  (Equation 2) 547 

where 𝑟4"6 and	𝑟5FG exhibit the mean firing rate of the lobula and inhibitory neurons, respectively. The 548 

depression factor 𝛼 controls the target activity rate of the lobula neurons. Here, 𝜂	is the learning rate. To 549 

simplify, a one-to-one connection between the inhibitory and lobula neuron is assumed in the model such that 550 

the activity of the j-th inhibitory neuron is equal to the activity of the j-th lobula neuron. The training is 551 

terminated when the synaptic weights over time are changed less than a very small threshold (0.001).  552 

 553 

Associative learning in Mushroom Bodies 554 

To verify if the lobula neurons can reproduce empirical behavioural results in different visual tasks, the model 555 

is enriched with a supervised learning process in the mushroom bodies. When the training process of the non-556 

associative learning is terminated, we use a reward-based synaptic wright modification rule in KCs-MBON 557 

connection (D), such that, if a stimulus is rewarding (i.e. positive), the corresponding synapses between 558 

activated neurons will be weakened while for a stimulus paired with punishment (i.e. negative), activated 559 

synapses are strengthened  (Cassenaer and Laurent, 2012) (see Discussion section). The model behaves as the 560 

activity of mushroom body neurons in decreasing their firing rate in responding to the positive stimuli during 561 

training (Okada et al., 2007). In this model, a single reinforcement neuron modulated strengths of synaptic 562 

connectivity at the output of the KCs in response to both reward and punishment. In the presence of the 563 

negative patterns, the synaptic strengths from the KCs to the MBON are modified, and modulated by 564 

dopamine, based on the classical STDP (Song et al., 2000; Zhang et al., 1998) (Figure S3A):  565 

𝑆𝑇𝐷𝑃H6$	(𝛥𝑡) = S 𝐴	𝑒
IJK/M	, 𝛥𝑡 > 0

−𝐴	𝑒JK/M	, 𝛥𝑡 < 0
 ,            (Equation 3) 566 

where 𝛥𝑡 = 𝑡𝑝𝑜𝑠𝑡 − 𝑡𝑝𝑟𝑒	implies the difference between the spike time of pre- and post- synaptic neurons. 567 

Further, applying the synaptic plasticity rule modulated by octopamine (octopamine modulated STDP) 568 

observed in the presence of rewarding stimuli to the synapses between KCs and MBON (Cassenaer and 569 

Laurent, 2012), the change in synaptic weight can be summarized as (Figure 7): 570 

𝑆𝑇𝐷𝑃9</	(𝛥𝑡) = S−𝐴	𝑒
IJK/M	, 𝛥𝑡 > 0

−𝐴	𝑒JK/M	, 𝛥𝑡 < 0
 ,            (Equation 4). 571 
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Here, 𝐴 = 0.01 and 𝜏 = 20	𝑚𝑠 exhibit the maximum magnitude and time constant of the STDP function for 572 

the synaptic potentiation or depression. 573 

 574 
 

Figure 7. STPS curves. (A) 

Classical STDP curve showing 

relationship between synaptic 

weight change and the precise 

time difference between the 

Kenyon Cells and MBON 

spikes. The synaptic weight 

can be either depressed or 

potentiated. (B) STDP curve modulated by octopamine in the insect mushroom body. The Synaptic 

weights are depressed. The formula of these curves were described in Equations 3 and 4. 

 

 575 

To train the model in different conditions of scanning, the flight-scan forms of the positive and negative 576 

patterns were presented to the model. Each set of flight-scan input contained a set of five patches with size 577 

75x75 pixels were selected from the test patterns by shifting 15 pixels over each pattern from the left to right 578 

(Figure 2A). The numbers of shifted pixels control the speed of scanning. The activity of the MBON was used 579 

to assess the performance of the model. Following the training, the performance of the model was calculated 580 

from a decrease in firing rate of the MBON to a pattern that had been rewarding and/or an increase in firing 581 

rate of MBON to a pattern that had been punishing in training. The bee’s final behavioural decision is proposed 582 

to come from a simple integration of these different valence-encoding neurons. 583 
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